Rainfall

During the month of January 2016, rains were received mostly in the southern parts of the continent and particularly in south-eastern Africa, as the rainy season in East Africa ended. Rainfall was also received in parts of central Africa which benefit from year-round rains. Compared to the long-term average (2001-2015), south-western Kenya, southern Democratic Republic of Congo (DRC), Tanzania, northern Malawi, northern Mozambique, northern Madagascar and most of South Africa recorded above average precipitation. Some of these areas experienced over 200% of average rainfall during the month. Meanwhile, southern Angola, north-western Namibia, eastern Botswana, Zimbabwe, southern Malawi, southern Mozambique and southern Madagascar recorded below normal rainfall in January 2016 (less than 75% of the long-term average). Dry conditions also prevailed in parts of central Africa, including northern DRC, the Republic of the Congo and Gabon.

In southern Africa, rainfall patterns observed in January 2016 did not compensate for the poor start of the rainy season between October and December 2015. The most affected areas include southern and central Zambia, southern Malawi, Zimbabwe, central and southern Mozambique, eastern Botswana, western South Africa and Lesotho, which have received between 30 and 70% of normal rainfall between October 2015 and January 2016. The most affected areas are in the south-eastern parts of the region. Most areas are currently in the crucial phases of the agricultural season. This means that continued poor rains would have a serious impact on agricultural production in the region.

Drought

Malawi: The agricultural season in Malawi lasts from November to the end of May. The country experienced a poor start to the 2015/16 agricultural season, with erratic and below average rains in November and December 2015 (with the exception of the period between 11 and 20 December). In January 2016, below average rainfall persisted in the southern parts of the country, while northern Malawi recorded above normal rains. This period coincides with the sowing window, which extends from November to the end of December in the southern parts of the country, and until mid-January in the north. Based on the current end-of-season WRSI projection, Africa RiskView estimates that the best

For more information visit our website: www.africanriskcapacity.org
conditions for sowing were reached slightly later than normal in central Malawi and parts of the south, while in the northern parts of the country sowing started normally. Currently the projected WRSI at the end of the season is below average in the centre and above average in the south of the country. However, these projections use normal rainfall (based on the 2001-2015 average) to end the season. Actual rainfall amounts are likely to differ from this long-term average. More accurate projections will be possible as the season progresses.

Kenya: The 2015/16 short rains season in Kenya ended in January 2016. The country customised *Africa RiskView* to model the progression of the two pastoral seasons in its arid and semi-arid lands (ASAL). As discussed in the previous section of this bulletin, the 2015/16 short rains season in Kenya and East Africa performed well, with above normal rainfall in most areas. As a result, the rangeland WRSI is above the long-term average (2002-2015) in most parts of Kenya. During the customisation process of *Africa RiskView*, the country decided to use the median of the previous five years as a benchmark against which the performance of the season should be measured. Based on this analysis, it appears that in most areas the rangeland WRSI is above normal at the end of the 2015/16 short rains season, with the exception of parts of central and western Kenya (Samburu West, Tiaty, Laikipia West, Baringo South, Kacheliba, Kapenguria, and Pokot South). A more detailed analysis of the performance of the season will be provided in the *Africa RiskView* End-of-Season Report on Kenya.

Affected Populations

Malawi: As the season in Malawi is only mid-way through, it is too early to make accurate projections on the potential impact of drought on vulnerable populations in 2015/16. Given the poor start of the season the situation in the country will be monitored closely in the coming months. Final outcomes will be dictated by the rains received over the next months.

Kenya: Given the good performance of the 2015/16 short rains season in Kenya, *Africa RiskView* estimates that only around 230,000 people are directly affected by drought conditions at the end of the season in the country’s ASAL. The most affected areas include Turkana South and East, and Laikipia West and North, which together account for over half of the total number of people affected. Localised dry conditions in these areas might require some type of intervention. However, compared to previous years, the total number of people affected is below the historical average of around 1 million people. The good 2015/16 short rains season also comes after a better than normal 2015 long rains season, providing some relief to communities affected by several consecutive below average seasons between 2013 and 2014.

Update on the ARC Risk Pool

Currently, seven countries form the 2015/16 ARC Risk Pool. These include three new countries that joined in 2015 (The Gambia, Malawi and Mali), in addition to the four members of the first ARC Risk Pool (Kenya, Mauritania, Niger and Senegal).

In the ongoing ARC Risk Pool, no payouts by the ARC Insurance Company Limited have been triggered yet given the overall good
performance of the 2015 agricultural season in West Africa and the good 2015/16 short rains season in Kenya, which did not trigger a payout either. For the agricultural season in Malawi, it is currently too early to say whether a payout will be triggered.

In addition to the countries already participating in the ARC Risk Pool, the ARC Secretariat is working with other countries exposed to drought events in view of their potential participation in the 2016/17 ARC Risk Pool. The participation of new countries usually follows an engagement process of 9 to 12 months which involves the customisation of Africa RiskView by in-country technical experts with support from the ARC Secretariat, the definition of an Operations Plans that outlines the assistance to be provided to vulnerable populations in the case of a payout by the ARC Insurance Company Limited, as well as the creation of structures and processes that allow for the quick disbursement of the payouts, and the activation of the pre-defined Operation Plans.
The African Risk Capacity (ARC) is a specialised agency of the African Union designed to improve the capacity of AU Member States to manage natural disaster risk, adapt to climate change and protect food insecure populations.

The Africa RiskView software is the technical engine of ARC. It uses satellite-based rainfall information to estimate the costs of responding to a drought, which triggers a corresponding insurance payout.

The ARC Insurance Company Limited is the financial affiliate of the ARC Agency, which pools risk across the continent through issuing insurance policies to participating countries.

About ARC:

The African Risk Capacity (ARC) is a specialised agency of the African Union designed to improve the capacity of AU Member States to manage natural disaster risk, adapt to climate change and protect food insecure populations.

The Africa RiskView software is the technical engine of ARC. It uses satellite-based rainfall information to estimate the costs of responding to a drought, which triggers a corresponding insurance payout.

The ARC Insurance Company Limited is the financial affiliate of the ARC Agency, which pools risk across the continent through issuing insurance policies to participating countries.

Note on Africa RiskView’s Methodology:

Rainfall: Africa RiskView uses various satellite rainfall datasets to track the progression of rainy seasons in Africa. Countries intending to participate in the ARC Risk Pool are required to customise the rainfall component by selecting the dataset which corresponds to the best to the actual rainfall measured on the ground.

Drought: Africa RiskView uses the Water Requirements Satisfaction Index (WRSI) as an indicator for drought. The WRSI is an index developed by the Food and Agriculture Organisation of the United Nations (FAO), which, based on satellite rainfall estimates, calculates whether a particular crop is getting the amount of water it needs at different stages of its development. To maximise the accuracy of Africa RiskView, countries intending to take out insurance customise the software’s parameters to reflect the realities on the ground.

Affected Populations: Based on the WRSI calculations, Africa RiskView estimates the number of people potentially affected by drought for each country participating in the insurance pool. As part of the in-country customisation process, vulnerability profiles are developed at the sub-national level for each country, which define the potential impact of a drought on the population living in a specific area.

Response Costs: In a fourth and final step, Africa RiskView converts the numbers of affected people into response costs. For countries participating in the insurance pool these national response costs are the underlying basis of the insurance policies. Payouts will be triggered from the ARC Insurance Company Limited to countries where the estimated response cost at the end of the season exceeds a pre-defined threshold specified in the insurance contracts.

Disclaimer: The data and information contained in this bulletin have been developed for the purposes of, and using the methodology of, Africa RiskView and the African Risk Capacity Group. The data in this bulletin is provided to the public for information purposes only, and neither the ARC Agency, its affiliates nor each of their respective officers, directors, employees and agents make any representation or warranty regarding the fitness of the data and information for any particular purpose. In no event shall the ARC Agency, its affiliates nor each of their respective officers, directors, employees and agents be held liable with respect to any subject matter presented here. Payouts under insurance policies issued by ARC Insurance Company Limited are calculated using a stand-alone version of Africa RiskView, the results of which can differ from those presented here.